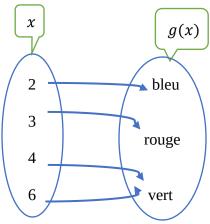
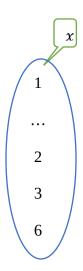
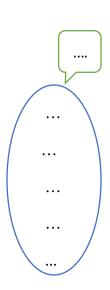
Et si on composait?

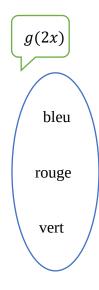

Exercice 1 Question flash

Soit f une fonction définie sur l'ensemble : $\{-1, -2, 5, 10\}$. Compléter le tableau suivant

x	5	10	-1	-2
f(x)	0	-3	-7	6
f(2x)				

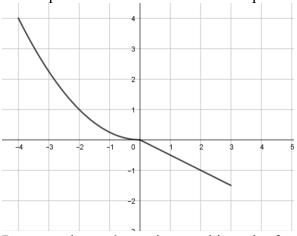

Exercice 2 Par binôme

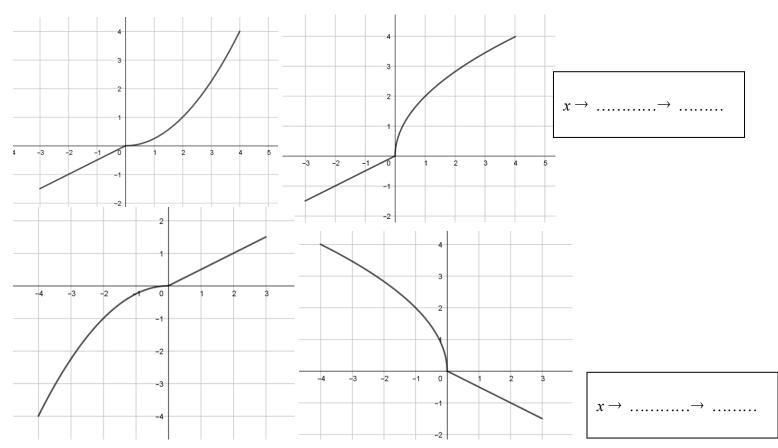

A partir de ce schéma d'une fonction g définie sur IR.



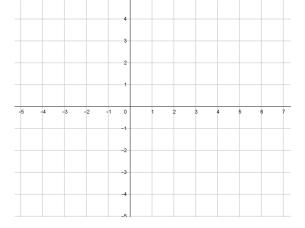
Indication : 2 est associé à bleu par la fonction g autrement dit : $g: 2 \mapsto bleu$

Compléter le schéma suivant



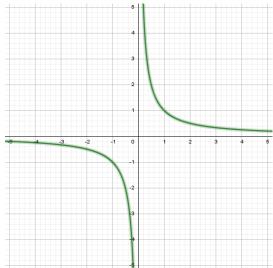

x ----

Exercice 3 Par groupe


On a représenté ci-dessous la courbe représentative de la fonction $f: x \mapsto f(x)$, définie sur [-4; 3].

Retrouver la représentation graphique des fonctions suivantes : $g: x \mapsto f(-x)$ et $h: x \mapsto -f(x)$

Construire l'allure de la courbe de la fonction suivante $x \mapsto -f(-x)$ dans le repère ci-dessous



 $x \rightarrow \dots \rightarrow \dots \rightarrow \dots$

Exercice 4 Par groupe

Sans calculatrice graphique

On a représenté ci-dessous la courbe représentative de la fonction $f: x \mapsto \frac{1}{x}$.

 A l'aide de la courbe ci-contre, construire la représentation graphique de la fonction x → ¹/_{x+2} dans le repère ci-contre.

 $x \rightarrow \dots \rightarrow \dots \rightarrow \dots \rightarrow \dots$

2. Construire la représentation graphique de la fonction $x \mapsto \frac{1}{x} + 2$ dans le repère ci-contre.

 $x \rightarrow \dots \rightarrow \dots$

Soit la fonction $g: x \mapsto x + 2$.

3. Laquelle des deux fonctions précédentes correspond à $x \mapsto g(f(x))$?

 $x \rightarrow \dots \rightarrow \dots$

4. Laquelle des deux fonctions précédentes correspond à $x \mapsto f(g(x))$?

 $x \rightarrow \dots \rightarrow \dots$

Exercice 5

Soit *h* la fonction définie par $h(x) = \sqrt{-3x + 5}$.

1. Compléter le schéma suivant afin de reconstituer l'expression de h(x):

 $x \rightarrow \dots \rightarrow \dots$

2. En faisant correspondre à chaque étape de ce programme une ligne du tableau, calculer les images par *h* des réels

x	-1	-0,5	0	0,5	1	1,5	2	2,5

- 3. Expliquer les réponses obtenues pour 2 et 2,5.
- 4. Donner le domaine de définition de la fonction h.
- 5. Soient deux fonctions k et l telles que $k(x) = \sqrt{x}$ et l(x) = -3x + 5.

Est-ce que $x \mapsto h(x)$ correspond à $x \mapsto k(l(x))$ ou $x \mapsto l(k(x))$?

Exercice 6 à faire individuellement et à rendre :

Soit f la fonction définie par $f(x) = \frac{1}{2x-6}$.

1. Compléter le programme de calcul suivant afin de reconstituer l'expression de f(x):

 $x \rightarrow \dots \rightarrow \dots$

2. En faisant correspondre à chaque étape de ce programme une ligne du tableau, calculer les images par f des réels

x	-0,5	0	0,5	1	1,5	2	2,5	3

- 3. Expliquer la réponse obtenue pour 3.
- 4. Donner les 2 fonctions $x \mapsto k(x)$ et $x \mapsto l(x)$ qui correspondent à f(x) = k(l(x)).

 $k(x) = \dots$ et $l(x) = \dots$