PLANCHES A CLOUS OU GEOPLANS

par Marie-Thérèse CHABROULET

La planche à clous est un matériel de faible prix de revient, facilement réalisable par les élèves eux-mêmes, dès le C.M.1, et qui se prête à de multiples utilisations dans les classes, dès le C.E.1.

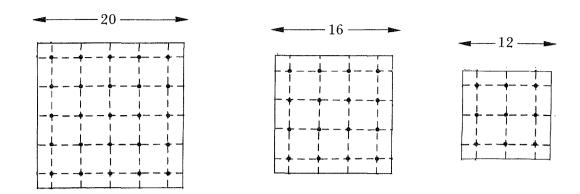
«Un matériel comme celui-ci peut être utilisé à beaucoup de fins et ceux qui ont vu les enfants s'en servir savent que, même si on prévoit initialement une tâche définie, on sera conduit à traiter d'autres questions nées de son emploi». (WHEELER dans «Mathématique dans l'enseignement élémentaire» O.C.D.L.).

Plusieurs livres traitent de l'utilisation des planches à clous :

- «Mathématique dans l'enseignement élémentaire» Wheeler (O.C.D.L.).;
- «Rencontre sur l'enseignement élémentaire» 4ème séminaire Galion (Cédic) ;
- «Points de départ» (Cédic).;

ainsi que l'article «Planches à clous et aires de Polygones» de Madame BEGUE publié dans Grand IN numéro 5 et la revue A.R.P. numéro 7.

Voici différents modèles de planches à clous qui permettront d'en construire de plus grandes par juxtaposition. (On trouvera aux pages 41 et 42 un exemple de construction de planches à clous par des élèves de C.M.1).



Les cotes sont données en centimètres.

DIVERSES UTILISATIONS POSSIBLES DES PLANCHES A CLOUS.

- 1) Classements de formes géométriques.
- a) «Faisons des figures avec les élastiques».

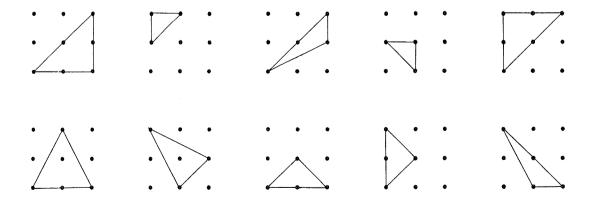
On peut classer les figures obtenues d'après

- le nombre de sommets,
- le nombre de côtés,
- la convexité,
- etc...

Ce sont les observations des élèves qui orientent les classements.

b) «Faisons des triangles avec les élastiques».

Voici différentes propositions des élèves reproduites sur papier pointé⁽¹⁾ ce qui permet de conserver toutes les solutions trouvées sur la planche avec les élastiques.



(1) du papier pointé à mailles carrées est en vente au C.R.D.P. de Grenoble.

Ces triangles peuvent être classés suivant divers critères :

- «... se superpose exactement à...» (1),
- triangles ayant un angle droit et triangles sans angle droit,
- triangles ayant deux côtés de même longueur et triangles ayant leurs trois côtés de longueurs différentes,
 - etc...
 - c) «Faisons des quadrilatères avec les élastiques.

Ces quadrilatères peuvent être également classés suivant divers critères :

- «... se superpose exactement à...»,
- le nombre d'angles droits,
- le nombre de paires de côtés parallèles,
- la convexité,
- etc...
- 2) Réalisations de figures imposées par le maître.
- a) Construire des figures «connues» :
- un carré,
- un rectangle,
- un triangle,
- un parallélogramme,
- un polygone,
- etc...
- b) Construire des figures connues avec des contraintes supplémentaires :
- un carré de côté imposé,
- un carré avec un clou à l'intérieur non touché par l'élastique,
- un carré de périmètre imposé,

- un polygone convexe à cinq côtés,
- un polygone concave à quatre côtés,
- etc...

(1) le mot «exactement» est utilisé dans les classes pour renforcer l'idée, déjà contenue dans «superposé», que les deux triangles posés l'un sur l'autre coïncident.

3) Jeux de transformations.

Pour «transformer» une figure on a uniquement le droit :

a) de décrocher une seule fois l'élastique.

Peut-on transformer

- un carré en un triangle ?
- un quadrilatère en un autre quadrilatère ?
- un triangle en un quadrilatère ?
- etc...
- b) d'accrocher une seule fois l'élastique.

Peut-on transformer

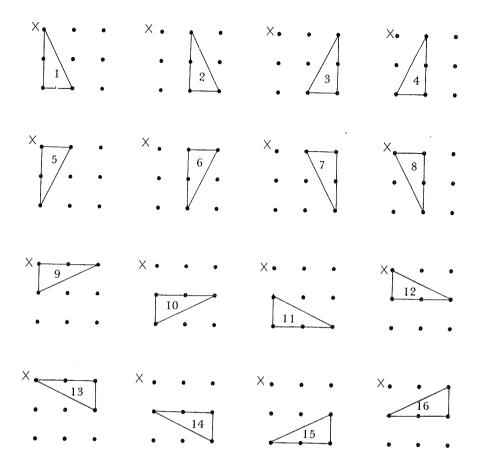
- un carré en un triangle ?
- un quadrilatère en un autre quadrilatère ?
- un triangle en un quadrilatère ?
- un quadrilatère concave en un quadrilatère convexe ?
- un rectangle en carré ?
- c) de décrocher puis d'accrocher une seule fois l'élastique.

Peut-on transformer

- un carré en un triangle ?
- un quadrilatère en un autre quadrilatère ?
- un triangle en un autre triangle ?
- un carré en un polygone à cinq côtés ?
- un triangle en rectangle ?
- une figure en une autre figure d'aire double ?
- etc...

4) Déplacements ou transformations permettant de «passer» d'une figure à une figure qui lui est exactement superposable.

La planche est orientée par un repère placé dans un angle (ce repère est noté X dans le dessin ci-dessous). Rechercher tous les triangles superposables exactement à un certain triangle, par exemple :



On numérote les différentes positions du triangle considéré et on cherche quelles transformations font «passer» d'une position à une autre.

Un enfant peut remarquer, par exemple, qu'on «passe» de la position 1 à la position 2 en faisant «glisser le triangle d'un carreau vers la droite». Si on désigne ce déplacement par D, on peut dresser le tableau suivant.

	1	4	5	8
A	2	3	6	7

De même en désignant par

G, le «glissement d'un carreau vers la gauche»,

H, le «glissement d'un carreau vers le haut»,

B, le «glissement d'un carreau vers le bas».

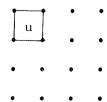
\int_{C}	2	3	6	7
G	1	4	5	8

H	10	11	14	15
П	9	12	13	16

	9	12	13	16
T C	10	11	14	15

f) Formule de Pick.

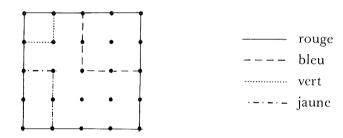
Si on choisit pour unité u



l'aire A d'une figure qui a I clous à l'intérieur et F clous sur sa frontière est donnée par :

$$A = \frac{1}{2} F + I - 1.$$

g) Aires et fractions.



L'unité d'aire étant l'aire du carré rouge, quelle est l'aire

- du carré bleu ?
- du carré vert ?
- du rectangle jaune ?

6) Combien de figures ?

a) Combien de carrés différents peut-on construire sur une planche donnée ?

Prenons le cas d'une planche 3 X 3.

Les réponses peuvent varier selon les enfants. Certains ne trouvent que deux carrés différents :

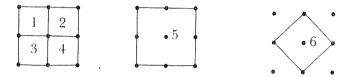
Ils attribuent «différent» à la taille des carrés.

D'autres en construisent cinq :

1	2	5 1
3	+	

Pour ces enfants, deux carrés sont différents soit lorsqu'ils sont de tailles différentes, soit lorsqu'ayant même taille, ils occupent des positions différentes.

D'autres enfin en trouvent six :



b) Combien de carrés peut-on construire sur une planche 2 \times 2 ? 3 \times 3 ? 4 \times 4 ? 5 \times 5 ? etc...

Observer les résultats obtenus. Si on ne s'intéresse qu'aux carrés dont les côtés sont parallèles aux bords de la planche (cas de l'enfant qui en a trouvé cinq précédemment) on peut voir que pour une planche n \times n, le nombre de carrés est égal à $1+2^2+3^2+...+(n-1)^2$.

- c) Sur une planche 3 X 3 :
- combien de rectangles peut-on construire ?
- combien de triangles rectangles ?
- combien de triangles isocèles ?
- combien de triangles ?
- etc...
- combien de longueurs différentes de segments ?

7) Codages de points. Codages de segments. Codages de figures polygonales.

a) Peut-on donner un nom au clou marqué d'une croix ?

• • • • •

• 🗶 • •

b) Placer un élastique tendu par deux clous. Comment désigner le segment ainsi matérialisé ?

c) Tendre un élastique de façon à former un polygone (sur la planche 5 X 5 par exemple). Envoyer un message à un autre enfant pour qu'il tende son élastique exactement de la même façon sur une autre planche 5 X 5.

Il y a certainement d'autres activités possibles avec les planches à clous, nous comptons sur les lecteurs de Grand IN pour enrichir ce catalogue d'activités.